Realization of Efficient AC-DC Bidirectional Converter for a DG Application by Using SVPWM

نویسندگان

  • N. Sudheer
  • M. Srinu
چکیده

In recent years, a system that makes use of various types of energy has been sought after and the distributed generation system that uses alternative energy such as vehicle power sources like the uninterrupted power system and hybrid electrical vehicles, fuel cells, solar cells and etc. are being studied actively. In these systems, for the greatest efficiency, the control of the charging and discharging systems to give and take energy between the DC bus and storage equipment’s and the dual voltage system require voltage step-up since the load increase in independent power source systems are essential. Therefore, bidirectional DC/DC converters are required to enable the give and take of energy between the different dc sources and to allow for control using efficient modulation scheme. Due to the limitations of energy sources of these systems, the conversion efficiency is very important. Generally, as a bi-directional coupled Buck-Boost DC/DC converter, in the isolated mode does not reverse the polarity and the current although the switch and diode is smaller than that of other converters. As such the conduction loss is small and the efficiency is high and utilization of SVPWM achieves low switching loss and more flexible to control. But the converter has the problems of current and voltage pulsation at input and output, which is like the shortage of the Buck and boost converter. A high-efficiency isolated bidirectional AC-DCconverter for a 380-V dc power distribution system to control bidirectional power flows and to improve its power conversion efficiency is proposed in this work. The dynamic analysis is evaluated by using Matlab/Simulink tool and simulation results are conferred.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bidirectional DC-DC Convreter with Zero Voltage Switching Capability for Energy Storage Application

In this paper, a bidirectional DC-DC converter with high power density for energy storage application is proposed. The presented converter provides power transfer in both directions only with adjusting phase shift angle. Zero voltage switching (ZVS) in both turn on and turn off moments of all switches is the major capability of the converter that makes it suitable for high power applications. Z...

متن کامل

BIC based on Modified Droop Control of Hybrid AC/DC Microgrid with PV/Wind/ESS under Variable Generation and Load Conditions

The idea of a microgrid is created by utilizing more diverse ac or dc distributed generation (DG) sources along with an energy storage system (ESS) and loads. The most efficient and reliable selection of ac and dc microgrids is a hybrid ac/dc microgrid. The hybrid microgrid largely overcomes the shortcomings of standalone ac or dc microgrids. A bidirectional interlinking converter (BIC) is util...

متن کامل

Interlink Converter with Linear Quadratic Regulator Based Current Control for Hybrid AC/DC Microgrid

A hybrid alternate current/direct current (AC/DC) microgrid consists of an AC subgrid and a DC subgrid, and the subgrids are connected through the interlink bidirectional AC/DC converter. In the stand-alone operation mode, it is desirable that the interlink bidirectional AC/DC converter manages proportional power sharing between the subgrids by transferring power from the under-loaded subgrid t...

متن کامل

Fault Diagnosis and Fault-Tolerant SVPWM Technique of Six-phase Converter under Open-Switch Fault

In this paper, a new open-switch fault diagnosis method is proposed for the six-phase AC-DC converter based on the difference between the phase current and the corresponding reference using an adaptive threshold. The open-switch faults are detected without any additional equipment and complicated calculations, since the proposed fault detection method is integrated with the controller required ...

متن کامل

On-grid and Off-grid Operation of Multi-Input Single-Output DC/DC Converter based Fuel Cell Generation System

This paper presents the modeling and simulation of a proton exchange membrane fuel cell (PEMFC) generation system for off-grid and on-grid operation and configuration. A fuel cell DG system consists of a fuel cell power plant, a DC/DC converter and a DC/AC inverter. The dynamic model for fuel cell array and its power electronic interfacing are presented also a multi-input single output (MISO) D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014